Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255764

RESUMO

Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.


Assuntos
Doenças Inflamatórias Intestinais , Monócitos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Macrófagos , Mesalamina , Anti-Inflamatórios , Inflamação
2.
ACS Nano ; 17(23): 23746-23760, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991252

RESUMO

The increasing understanding of ferroptosis has indicated its role and therapeutic potential in cancer; however, this knowledge has yet to be translated into effective therapies. Glioblastoma (GBM) patients face a bleak prognosis and encounter challenges due to the limited treatment options available. In this study, we conducted a genome-wide CRISPR-Cas9 screening in the presence of a ferroptosis inducer (RSL3) to identify the key driver genes involved in ferroptosis. We identified ALOX15, a key lipoxygenase (LOX), as an essential driver of ferroptosis. Small activating RNA (saRNA) was used to mediate the expression of ALOX15 promoted ferroptosis in GBM cells. We then coated saALOX15-loaded mesoporous polydopamine (MPDA) with Angiopep-2-modified macrophage membranes (MMs) to reduce the clearance by the mononuclear phagocyte system (MPS) and increase the ability of the complex to cross the blood-brain barrier (BBB) during specific targeted therapy of orthotopic GBM. These generated hybrid nanoparticles (NPs) induced ferroptosis by mediating mitochondrial dysfunction and rendering mitochondrial morphology abnormal. In vivo, the modified MM enabled the NPs to target GBM cells, exert a marked inhibitory effect on GBM progression, and promote GBM radiosensitivity. Our results reveal ALOX15 to be a promising therapeutic target in GBM and suggest a biomimetic strategy that depends on the biological properties of MMs to enhance the in vivo performance of NPs for treating GBM.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamento farmacológico , Biomimética , Macrófagos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
3.
ACS Nano ; 17(17): 16432-16447, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646615

RESUMO

Radiotherapy is a mainstay of glioblastoma (GBM) treatment; however, the development of therapeutic resistance has hampered the efficacy of radiotherapy, suggesting that additional treatment strategies are needed. Here, an in vivo loss-of-function genome-wide CRISPR screen was carried out in orthotopic tumors in mice subjected to radiation treatment to identify synthetic lethal genes associated with radiotherapy. Using functional screening and transcriptome analyses, glutathione synthetase (GSS) was found to be a potential regulator of radioresistance through ferroptosis. High GSS levels were closely related to poor prognosis and relapse in patients with glioma. Mechanistic studies demonstrated that GSS was associated with the suppression of radiotherapy-induced ferroptosis in glioma cells. The depletion of GSS resulted in the disruption of glutathione (GSH) synthesis, thereby causing the inactivation of GPX4 and iron accumulation, thus enhancing the induction of ferroptosis upon radiotherapy treatment. Moreover, to overcome the obstacles to broad therapeutic translation of CRISPR editing, we report a previously unidentified genome editing delivery system, in which Cas9 protein/sgRNA complex was loaded into Angiopep-2 (Ang) and the trans-activator of the transcription (TAT) peptide dual-modified extracellular vesicle (EV), which not only targeted the blood-brain barrier (BBB) and GBM but also permeated the BBB and penetrated the tumor. Our encapsulating EVs showed encouraging signs of GBM tissue targeting, which resulted in high GSS gene editing efficiency in GBM (up to 67.2%) with negligible off-target gene editing. These results demonstrate that a combination of unbiased genetic screens, and CRISPR-Cas9-based gene therapy is feasible for identifying potential synthetic lethal genes and, by extension, therapeutic targets.


Assuntos
Vesículas Extracelulares , Glioblastoma , Glioma , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/radioterapia , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Vesículas Extracelulares/genética , Glutationa
4.
Transl Oncol ; 37: 101756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595394

RESUMO

Glioma is the most common tumor of the nervous system. The diffuse growth and proliferation of glioma poses great challenges for its treatment. Here, Transcriptomic analysis revealed that Rac GTPase activating protein 1 (RACGAP1) is highly expressed in glioma. RACGAP1 has been shown to play an important role in the malignant biological progression of a variety of tumors. However, the underlying role and mechanism in glioma remain poorly understood. By using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry and Orthotopic mouse xenografts, we confirmed that knockdown of RACGAP1 impeded cell proliferation in glioma and prolonged the survival of orthotopic mice. Interestingly, we also found that inhibiting the expression of RACGAP1 reduced the expression of minichromosome maintenance 3 (MCM3) through RNA-seq and rescue assay, while Yin Yang 1 (YY1) transcriptionally regulated RACGAP1 expression. Furthermore, T7 peptide-decorated exosome (T7-exo) is regard as a promising delivery modality for targeted therapy of glioma, and the T7-siRACGAP1-exo significantly improved the survival time of glioma bearing mice. These results suggested that targeting RACGAP1 may be a potential strategy for glioma therapy.

5.
J Laparoendosc Adv Surg Tech A ; 33(7): 622-625, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167012

RESUMO

Background: At present, T-tube drainage or primary suture for common bile duct stones is common management. Methods: The clinical data of 100 patients who underwent laparoscopic common bile duct exploration and T-tube drainage or primary suture for common bile duct stones from 2019 to 2021 were analyzed retrospectively, including 50 cases of primary suture and 50 cases of T-tube drainage. Results: The operation time and postoperative hospital stay of patients with primary suture were lower than those in T-tube drainage group (P < .05). There was no significant difference in the incidence of postoperative complications and hospitalization expenses between the two groups (P > .05). Conclusions: It has been suggested that the therapeutic effect of laparoscopic primary suture is better than that of T-tube drainage; although they have different indications, they should be selected according to the specific individual situation of patients.


Assuntos
Coledocolitíase , Cálculos Biliares , Laparoscopia , Humanos , Coledocolitíase/cirurgia , Coledocolitíase/complicações , Estudos Retrospectivos , Ducto Colédoco/cirurgia , Cálculos Biliares/cirurgia , Cálculos Biliares/complicações , Drenagem/efeitos adversos , Complicações Pós-Operatórias/etiologia , Tempo de Internação , Laparoscopia/efeitos adversos , Suturas/efeitos adversos
6.
J Nanobiotechnology ; 21(1): 45, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755314

RESUMO

Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.


Assuntos
Neoplasias Encefálicas , Exossomos , Glioblastoma , MicroRNAs , Humanos , Animais , Camundongos , Temozolomida/farmacologia , Glioblastoma/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto , Glicoproteínas/metabolismo , Glicoproteínas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
7.
Front Pharmacol ; 13: 975291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059990

RESUMO

Glioblastoma (GBM) is the most malignant tumor of the central nervous system in adults. Irradiation (IR) and temozolomide (TMZ) play an extremely important role in the treatment of GBM. However, major impediments to effective treatment are postoperative tumor recurrence and acquired resistance to chemoradiotherapy. Our previous studies confirm that Yin Yang 1 (YY1) is highly expressed in GBM, whereby it is associated with cell dedifferentiation, survival, and therapeutic resistance. Targeted delivery of small interfering RNA (siRNA) without blood-brain barrier (BBB) restriction for eradication of GBM represents a promising approach for therapeutic interventions. In this study, we utilize the engineering technology to generate T7 peptide-decorated exosome (T7-exo). T7 is a peptide specifically binding to the transferrin receptor. T7-exo shows excellent packaging and protection of cholesterol-modified Cy3-siYY1 while quickly releasing payloads in a cytoplasmic reductive environment. The engineered exosomes T7-siYY1-exo could deliver more effciently to GBM cells both in vitro and in vivo. Notably, in vitro experiments demonstrate that T7-siYY1-exo can enhance chemoradiotherapy sensitivity and reverse therapeutic resistance. Moreover, T7-siYY1-exo and TMZ/IR exert synergistic anti-GBM effect and significantly improves the survival time of GBM bearing mice. Our findings indicate that T7-siYY1-exo may be a potential approach to reverse the chemoradiotherapy resistance in GBM.

8.
PLoS Comput Biol ; 18(5): e1009083, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500033

RESUMO

Working memory is a core component of critical cognitive functions such as planning and decision-making. Persistent activity that lasts long after the stimulus offset has been considered a neural substrate for working memory. Attractor dynamics based on network interactions can successfully reproduce such persistent activity. However, it requires a fine-tuning of network connectivity, in particular, to form continuous attractors which were suggested for encoding continuous signals in working memory. Here, we investigate whether a specific form of synaptic plasticity rules can mitigate such tuning problems in two representative working memory models, namely, rate-coded and location-coded persistent activity. We consider two prominent types of plasticity rules, differential plasticity correcting the rapid activity changes and homeostatic plasticity regularizing the long-term average of activity, both of which have been proposed to fine-tune the weights in an unsupervised manner. Consistent with the findings of previous works, differential plasticity alone was enough to recover a graded-level persistent activity after perturbations in the connectivity. For the location-coded memory, differential plasticity could also recover persistent activity. However, its pattern can be irregular for different stimulus locations under slow learning speed or large perturbation in the connectivity. On the other hand, homeostatic plasticity shows a robust recovery of smooth spatial patterns under particular types of synaptic perturbations, such as perturbations in incoming synapses onto the entire or local populations. However, homeostatic plasticity was not effective against perturbations in outgoing synapses from local populations. Instead, combining it with differential plasticity recovers location-coded persistent activity for a broader range of perturbations, suggesting compensation between two plasticity rules.


Assuntos
Memória de Curto Prazo , Modelos Neurológicos , Plasticidade Neuronal , Sinapses , Aprendizado de Máquina não Supervisionado
9.
J Exp Clin Cancer Res ; 41(1): 154, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35459258

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumor mostly occurring in children and adolescents, while chemotherapy resistance often develops and the mechanisms involved remain challenging to be fully investigated. METHODS: Genome-wide CRISPR screening combined with transcriptomic sequencing were used to identify the critical genes of doxorubicin resistance. Analysis of clinical samples and datasets, and in vitro and in vivo experiments (including CCK-8, apoptosis, western blot, qRT-PCR and mouse models) were applied to confirm the function of these genes. The bioinformatics and IP-MS assays were utilized to further verify the downstream pathway. RGD peptide-directed and exosome-delivered siRNA were developed for the novel therapy strategy. RESULTS: We identified that E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin-resistance in OS. Further exploration revealed that Rad18 interact with meiotic recombination 11 (MRE11) to promote the formation of the MRE11-RAD50-NBS1 (MRN) complex, facilitating the activation of the homologous recombination (HR) pathway, which ultimately mediated DNA damage tolerance and leaded to a poor prognosis and chemotherapy response in patients with OS. Rad18-knockout effectively restored the chemotherapy response in vitro and in vivo. Also, RGD-exosome loading chemically modified siRad18 combined with doxorubicin, where exosome and chemical modification guaranteed the stability of siRad18 and the RGD peptide provided prominent targetability, had significantly improved antitumor activity of doxorubicin. CONCLUSIONS: Collectively, our study identifies Rad18 as a driver of OS doxorubicin resistance that promotes the HR pathway and indicates that targeting Rad18 is an effective approach to overcome chemotherapy resistance in OS.


Assuntos
Neoplasias Ósseas , Doxorrubicina , Osteossarcoma , Adolescente , Animais , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Ubiquitina-Proteína Ligases/uso terapêutico
10.
Front Pharmacol ; 13: 1026182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588717

RESUMO

Body-protective compound (BPC) 157 demonstrates protective effects against damage to various organs and tissues. For future clinical applications, we had previously established a solid-phase synthesis process for BPC157, verified its biological activity in different wound models, and completed preclinical safety evaluations. This study aimed to investigate the pharmacokinetics, excretion, metabolism, and distribution profiles of BPC157. After a single intravenous (IV) administration, single intramuscular (IM) administrations at three doses in successive increments along with repeated IM administrations, the elimination half-life (t1/2) of prototype BPC157 was less than 30 min, and BPC157 showed linear pharmacokinetic characteristics in rats and beagle dogs at all doses. The mean absolute bioavailability of BPC157 following IM injection was approximately 14%-19% in rats and 45%-51% in beagle dogs. Using [3H]-labeled BPC157 and radioactivity examination, we proved that the main excretory pathways of BPC157 involved urine and bile. [3H]BPC157 was rapidly metabolized into a variety of small peptide fragments in vivo, thus forming single amino acids that entered normal amino acid metabolism and excretion pathways. In conclusion, this study provides the first analysis of the pharmacokinetics of BPC157, which will be helpful for its translation in the clinic.

11.
Neuro Oncol ; 24(7): 1056-1070, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905060

RESUMO

BACKGROUND: Compelling evidence suggests that glioblastoma (GBM) recurrence results from the expansion of a subset of tumor cells with robust intrinsic or therapy-induced radioresistance. However, the mechanisms underlying GBM radioresistance and recurrence remain elusive. To overcome obstacles in radioresistance research, we present a novel preclinical model ideally suited for radiobiological studies. METHODS: With this model, we performed a screen and identified a radiation-tolerant persister (RTP) subpopulation. RNA sequencing was performed on RTP and parental cells to obtain mRNA and miRNA expression profiles. The regulatory mechanisms among NF-κB, YY1, miR-103a, XRCC3, and FGF2 were investigated by transcription factor activation profiling array analysis, chromatin immunoprecipitation, western blot analysis, luciferase reporter assays, and the MirTrap system. Transferrin-functionalized nanoparticles (Tf-NPs) were employed to improve blood-brain barrier permeability and RTP targeting. RESULTS: RTP cells drive radioresistance by preferentially activating DNA damage repair and promoting stemness. Mechanistic investigations showed that continual radiation activates the NF-κB signaling cascade and promotes nuclear translocation of p65, leading to enhanced expression of YY1, the transcription factor that directly suppresses miR-103a transcription. Restoring miR-103a expression under these conditions suppressed the FGF2-XRCC3 axis and decreased the radioresistance capability. Moreover, Tf-NPs improved radiosensitivity and provided a significant survival benefit. CONCLUSIONS: We suggest that the NF-κB-YY1-miR-103a regulatory axis is indispensable for the function of RTP cells in driving radioresistance and recurrence. Thus, our results identified a novel strategy for improving survival in patients with recurrent/refractory GBM.


Assuntos
Glioblastoma , MicroRNAs , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Tolerância a Radiação/genética
12.
Front Cell Dev Biol ; 9: 731365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881240

RESUMO

Hyperlipidemia is a major risk factor for metabolic disorders and cardiovascular injury. The excessive deposition of saturated fatty acids in the heart leads to chronic cardiac inflammation, which in turn causes myocardial damage and systolic dysfunction. However, the effective suppression of cardiac inflammation has emerged as a new strategy to reduce the impact of hyperlipidemia on cardiovascular disease. In this study, we identified a novel monomer, known as LuHui Derivative (LHD), which reduced the serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and reduced lipid deposition in cardiomyocytes. In addition, LHD treatment improved cardiac function, reduced hyperlipidemia-induced inflammatory infiltration in cardiomyocytes and suppressed the release of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From a mechanistic perspective, cluster of differentiation 36 (CD36), an important cell surface receptor, was identified as a downstream target following the LHD treatment of palmitic acid-induced inflammation in cardiomyocytes. LHD specifically binds the pocket containing the regulatory sites of RNA methylation in the fat mass and obesity-associated (FTO) protein that is responsible for elevated intracellular m6A levels. Moreover, the overexpression of the N6-methyladenosine (m6A) demethylase FTO markedly increased CD36 expression and suppressed the anti-inflammatory effects of LHD. Conversely, loss-of-function of FTO inhibited palmitic acid-induced cardiac inflammation and altered CD36 expression by diminishing the stability of CD36 mRNA. Overall, our results provide evidence for the crucial role of LHD in fatty acid-induced cardiomyocyte inflammation and present a new strategy for the treatment of hyperlipidemia and its complications.

13.
Ann Transl Med ; 9(17): 1369, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733921

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have recently been found to be vital regulators of various cancers, including colorectal cancer (CRC). It has been previously reported that the dysregulated expression of lncRNA Five prime to Xist (FTX) is involved in carcinogenesis. However, the role of lncRNA FTX in the progression of CRC is still unclear. METHODS: Fluorescence in situ hybridization (FISH) was used to detect the expression of lncRNA FTX and miR-214-5p in CRC tissues. Cell Counting Kit-8 assay, transwell assay, wound-healing assay, and proliferation assay were used to explore the function of lncRNA FTX in CRC cells. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and luciferase reporter assay were used to confirm the relationship between lncRNA FTX and miR-214-5p-jagged canonical Notch ligand 1 (JAG1). We further explored the role of lncRNA FTX in vivo using xenograft tumor assay. RESULTS: lncRNA FTX was found to be upregulated in CRC tissues by FISH. The downregulation of endogenous lncRNA FTX expression inhibited CRC cell proliferation, migration, and invasion. Mechanistically, lncRNA FTX sequestered miR-214-5p and thus released its repression on JAG1, driving the malignant progression of CRC. CONCLUSIONS: These findings give rise to a new perspective, the lncRNA FTX-miR-214-5p-JAG1 regulatory axis, in exploring the cancer-promoting mechanism of lncRNA FTX in CRC.

14.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489334

RESUMO

BACKGROUND: A better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies. METHODS: We used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15-/-, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression. RESULTS: GDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse. CONCLUSIONS: Our results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.


Assuntos
Antígeno CD48/imunologia , Carcinoma Hepatocelular/imunologia , Fator 15 de Diferenciação de Crescimento/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Tolerância Imunológica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Microambiente Tumoral/imunologia
15.
Stem Cell Res Ther ; 12(1): 426, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321079

RESUMO

BACKGROUND: Hypoxia has been shown to be able to induce tenogenic differentiation and proliferation of mesenchymal stem cells (MSCs) which lead hypoxia-induced MSCs to be a potential treatment for tendon injury. However, little is known about the mechanism underlying the tenogenic differentiation and proliferation process of hypoxic MSCs, which limited the application of differentiation-inducing therapies in tendon repair. This study was designed to investigate the role of Mohawk homeobox (Mkx) in tenogenic differentiation and proliferation of hypoxic MSCs. METHODS: qRT-PCR, western blot, and immunofluorescence staining were performed to evaluate the expression of Mkx and other tendon-associated markers in adipose-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) under hypoxia condition. Small interfering RNA technique was applied to observe the effect of Mkx levels on the expression of tendon-associated markers in normoxic and hypoxic BMSCs. Hypoxic BMSCs infected with Mkx-specific short hair RNA (shRNA) or scramble were implanted into the wound gaps of injured patellar tendons to assess the effect of Mkx levels on tendon repair. In addition, cell counting kit-8 assay, colony formation unit assay, cell cycle analysis, and EdU assay were adopted to determine the proliferation capacity of normoxic or hypoxic BMSCs infected with or without Mkx-specific shRNA. RESULTS: Our data showed that the expression of Mkx significantly increased in hypoxic AMSCs and increased much higher in hypoxic BMSCs. Our results also detected that the expression of tenogenic differentiation markers after downregulation of Mkx were significantly decreased not only in normoxic BMSCs, but also in hypoxic BMSCs which paralleled the inferior histological evidences, worse biomechanical properties, and smaller diameters of collagen fibrils in vivo. In addition, our in vitro data demonstrated that the optical density values, the clone numbers, the percentage of cells in S phage, and cell proliferation potential of both normoxic and hypoxic BMSCs were all significantly increased after knockdown of Mkx and were also significantly enhanced in both AMSCs and BMSCs in hypoxia condition under which the expression of Mkx was upregulated. CONCLUSIONS: These findings strongly suggested that Mkx mediated hypoxia-induced tenogenic differentiation of MSCs but could not completely repress the proliferation of hypoxic MSCs.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Hipóxia , Tendões
16.
J Sep Sci ; 44(17): 3305-3318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185383

RESUMO

Hyperlipidemia is recognized as one of the most important risk factors for morbidity and mortality due to cardiovascular diseases. Daming capsule, a Chinese patent medicine, has shown definitive efficacy in patients with hyperlipidemia. In this study, serum biochemistry and histopathology assessment were used to investigate the lipid-lowering effect of Daming capsule. Furthermore, urinary metabolomics based on ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was conducted to identify the urinary biomarkers associated with hyperlipidemia and discover the underlying mechanisms of the antihyperlipidemic action of Daming capsule. After 10 weeks of treatment, Daming capsule significantly lowered serum lipid levels and ameliorated hepatic steatosis induced by a high-fat diet. A total of 33 potential biomarkers associated with hyperlipidemia were identified, among which 26 were robustly restored to normal levels after administration of Daming capsule. Pathway analysis revealed that the lipid-lowering effect of Daming capsule is related to the regulation of multiple metabolic pathways including vitamin B and amino acid metabolism, tricarboxylic acid cycle, and pentose phosphate pathway. Notably, the study demonstrates that metabolomics is a powerful tool to elucidate the multitarget mechanism of traditional Chinese medicines, thereby promoting their research and development.


Assuntos
Medicamentos de Ervas Chinesas/análise , Hiperlipidemias/urina , Hipolipemiantes/análise , Metabolômica , Substâncias Protetoras/análise , Substâncias Protetoras/uso terapêutico , Administração Oral , Animais , Cápsulas/análise , Cápsulas/metabolismo , Cápsulas/uso terapêutico , Cromatografia Líquida de Alta Pressão , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hipolipemiantes/metabolismo , Hipolipemiantes/uso terapêutico , Masculino , Espectrometria de Massas , Substâncias Protetoras/metabolismo , Ratos , Ratos Wistar , Software , Fatores de Tempo
17.
Environ Toxicol Pharmacol ; 85: 103624, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33617954

RESUMO

Cardiotoxicity is one of the primary limitations in the clinical use of the anticancer drug doxorubicin (DOX). However, the role of microRNAs (miRNAs) in DOX-induced cardiomyocyte death has not yet been covered. To investigate this, we observed a significant increase in miR-98 expression in neonatal rat ventricular myocytes after DOX treatment, and MTT, LIVE/Dead and Viability/Cytotoxicity staining showed that miR-98 mimic inhibited DOX-induced cell death. This was also confirmed by Flow cytometry and Annexin V-FITC/PI staining. Interestingly, the protein expression of caspase-8 was upregulated by miR-98 mimics during this process, whereas Fas and RIP3 were downregulated. In addition, the effect of miR-98 against the expression of Fas and RIP3 were restored by the specific caspase-8 inhibitor Z-IETD-FMK. Thus, we demonstrate that miR-98 protects cardiomyocytes from DOX-induced injury by regulating the caspase-8-dependent Fas/RIP3 pathway. Our findings enhance understanding of the therapeutic role of miRNAs in the treatment of DOX-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade/genética , Caspase 8/metabolismo , Doxorrubicina , MicroRNAs , Miócitos Cardíacos/metabolismo , Animais , Cardiotoxicidade/metabolismo , Sobrevivência Celular , Células Cultivadas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos/fisiologia , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Receptor fas/metabolismo
18.
Stem Cells Int ; 2020: 8822609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133195

RESUMO

Tendon injury is a common but tough medical problem. Unsatisfactory clinical results have been reported in tendon repair using mesenchymal stem cell (MSC) therapy, creating a need for a better strategy to induce MSCs to tenogenic differentiation. This study was designed to examine the effect of hypoxia on the tenogenic differentiation of different MSCs and their tenogenic differentiation capacities under hypoxia condition in vitro and to investigate the in vivo inductility of hypoxia in tenogenesis. Adipose tissue-derived MSCs (AMSCs) and bone marrow-derived MSCs (BMSCs) were isolated and characterized. The expression of hypoxia-induced factor-1 alpha (Hif-1α) was examined to confirm the establishment of hypoxia condition. qRT-PCR, western blot, and immunofluorescence staining were used to evaluate the expression of tendon-associated marker Col-1a1, Col-3a1, Dcn, and Tnmd in AMSCs and BMSCs under hypoxia condition, compared with Tgf-ß1 induction. In vivo, a patellar tendon injury model was established. Normoxic and hypoxic BMSCs were cultured and implanted. Histological, biomechanical, and transmission electron microscopy analyses were performed to assess the improved healing effect of hypoxic BMSCs on tendon injury. Our in vitro results showed that hypoxia remarkably increased the expression of Hif-1α and that hypoxia not only promoted a significant increase in tenogenic markers in both AMSCs and BMSCs compared with the normoxia group but also showed higher inductility compared with Tgf-ß1. In addition, hypoxic BMSCs exhibited higher potential of tenogenic differentiation than hypoxic AMSCs. Our in vivo results demonstrated that hypoxic BMSCs possessed better histological and biomechanical properties than normoxic BMSCs, as evidenced by histological scores, patellar tendon biomechanical parameters, and the range and average of collagen fibril diameters. These findings suggested that hypoxia may be a practical and reliable strategy to induce tenogenic differentiation of BMSCs for tendon repair and could enhance the effectiveness of MSCs therapy in treating tendon injury.

19.
J Clin Neurosci ; 81: 462-468, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33222963

RESUMO

OBJECTIVE: To evaluate the long-term efficacy of Coflex dynamic stabilization device in the treatment of lumbar spinal stenosis. METHODS: The clinical and imaging data of 73 patients undergoing Coflex dynamic stabilization surgery from July 2008 to June 2012 were retrospectively analyzed. All patients had a minimum of 8 years of follow-up. Clinical data were used to assess the clinical efficacy, and radiographic parameters were measured for evaluation of ASD. RESULTS: 56 Patients were followed up for 107.6 ± 13.3 months. The visual analogue scale of pain (VAS), Owestry disability index (ODI) and Japanese Orthopedic Association Scores (JOA) improved significantly after surgery. At 6 months after surgery and the last follow-up, lumbar range of motion (ROM) was significantly lower than that before surgery (P < 0.001). ROM was slightly increased at the last follow-up compared with that 6 months after operation (P > 0.05). ROM of adjacent segments increased at 6 months and at the last follow-up compared with that before surgery (P > 0.05). At 6 months after surgery, intervertebral space height (ISH) and intervertebral foramen height (IFH) of implanted segment was significantly higher than that before surgery (P < 0.05). At the last follow-up, there was a decrease in ISH and IFH (P > 0.05). During the follow-up period, a total of 11 patients (19.6%) experienced complications and 6 patients (10.7%) underwent secondary surgery. CONCLUSION: Coflex interspinous process dynamic stabilization is effective in the long-term treatment of lumbar spinal stenosis, the ISH and IFH of implanted segment could be increased in a short period of time.


Assuntos
Procedimentos Neurocirúrgicos/instrumentação , Próteses e Implantes , Estenose Espinal/cirurgia , Adulto , Idoso , Descompressão Cirúrgica/instrumentação , Feminino , Seguimentos , Humanos , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Estudos Retrospectivos , Resultado do Tratamento
20.
Arthritis Rheumatol ; 72(6): 943-956, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362074

RESUMO

OBJECTIVE: This study was undertaken to uncover the pathophysiologic role of discoidin domain receptor 2 (DDR-2), a putative fibrillar collagen receptor, in inflammation promotion and joint destruction in rheumatoid arthritis (RA). METHODS: In synovial tissue from patients with RA and from mice with collagen antibody-induced arthritis (CAIA) (using Ddr2-/- and DBA/1 mice), gene and protein expression levels of DDR-2, interleukin-15 (IL-15), and Dkk-1 were measured by quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. Gene knockdown of DDR2 in human RA fibroblast-like synoviocytes (FLS) was conducted via small interfering RNA. Interaction between the long noncoding RNA H19 and microRNA 103a (miR-103a) was assessed in RA FLS using RNA pulldown assays. Cellular localization of H19 was examined using fluorescence in situ hybridization assays. Chromatin immunoprecipitation and dual luciferase reporter assays were applied to verify H19 transcriptional and posttranscriptional regulation by miR-103a. RESULTS: DDR2 messenger RNA (mRNA) expression was significantly associated with the levels of IL-15 and Dkk-1 mRNA in the synovial tissue of RA patients (r2 = 0.2022-0.3293, all P < 0.05; n = 33) and with the serum levels of IL-15 and Dkk-1 in mice with CAIA (P < 0.05). In human RA FLS, activated DDR-2 induced the expression of H19 through c-Myc. Moreover, H19 directly interacted with and promoted the degradation of miR-103a. CONCLUSION: These results indicate a novel role for activated DDR-2 in RA FLS, showing that DDR-2 is responsible for regulating the expression of IL-15 and Dkk-1 in RA FLS and is involved in the promotion of inflammation and joint destruction during pathophysiologic development of RA. Moreover, DDR-2 inhibition, acting through the H19-miR-103a axis, leads to reductions in the inflammatory reaction and severity of joint destruction in mice with CAIA, suggesting that inhibition of DDR-2 may be a potential therapeutic strategy for RA.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Receptor com Domínio Discoidina 2/metabolismo , Interleucina-15/metabolismo , Transdução de Sinais/genética , Animais , Regulação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos DBA , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...